(495) 984-74-92
(495) 226-51-87
[email protected]
WhatsApp
Главная
Техническая информация
Газовая сварка и резка металлов
Кислородно-флюсовая резка высоколегированных сталей

Кислородно-флюсовая резка высоколегированных сталей

К высоколегированным сталям относятся стали, содержащие более 10% легирующих элементов. Высоколегированные стали кроме обычных примесей углерода, кремния, марганца, серы и фосфора содержат в различных количествах такие примеси, как хром, никель, титан, вольфрам, молибден, ванадий, ниобий, медь, алюминий и др. Такие стали не могут подвергаться обычной кислородной резке, так как на поверхности их образуется пленка тугоплавких окислов. Такие стали подвергаются только кислородно-флюсовой резке. Применяются разделительная и поверхностная кислородно-флюсовая резка.

Сварка меди

Высоколегированные стали в зависимости от содержания легирующих элементов по структуре подразделяются на основные три группы: аустенитные, ферритные и мартенситные. Легирующие элементы по-разному влияют на процесс резки высоколегированных сталей. Одни из них не влияют на процесс резки, другие вызывают способность кромки реза воспринимать закалку, третьи — замедляют процесс резки и образуют карбиды хрома.

Стали аустенитного и ферритного класса перед резкой не подвергаются подогреву, а стали мартенситного класса подогреваются до 250—350°С. Высоколегированные стали обладают низкой теплопроводностью, а процесс кислородно-флюсовой резки вызывает интенсивное тепловое воздействие на разрезаемый металл, так как одновременно с кислородом вводится железный порошок, который, сгорая, выделяет дополнительное тепло. В результате низкой теплопроводности и большого выделения тепла в зоне реза в металле возникают большие внутренние напряжения, которые приводят к образованию деформаций разрезаемых листов, а при жестком закреплении — трещин.

Перед резкой линия реза тщательно очищается от грязи, ржавчины и масла, а флюс просеивается и прокаливается. Резку начинают от края листа или от предварительно сделанного отверстия.

Режимы кислородно-флюсовой резки высокохромистых сталей отличаются от режимов резки низкоуглеродистых сталей. Мощность подогревающего пламени берется на 15—25% больше, чем при резке низкоуглеродистых сталей такой же толщины. Расстояние от конца мундштука до поверхности разрезаемого металла также больше, чем при обычной кислородной резке. Делается это для того, чтобы частицы флюса успели нагреться до температуры воспламенения, при этом уменьшается возможность засорения выходных каналов подогревающего пламени.

На процесс кислородно-флюсовой резки влияют правильный выбор давления и расхода режущего кислорода, марка и расход флюса, мощность подогревающего пламени, скорость резки и другие параметры. Техника кислородно-флюсовой резки, в основном, такая же, как и при обычной кислородной резке. Резка осуществляется как ручными, так и машинными резаками. В качестве горючего газа применяется ацетилен и газы-заменители ацетилена (пропан-бутановая смесь и природные газы).

Правильный выбор расхода флюса устанавливают визуально. На кромках реза остаются небольшие валики расплавленного железного порошка. Большой расход флюса вызывает увеличение размеров валиков и замедляет процесс резки. Малый расход флюса также замедляет процесс резки из-за недостаточного количества выделившегося тепла. При кислородно-флюсовой резке вентиль подачи флюса на резаке необходимо открывать после зажигания подогревающего пламени. При выключении необходимо сначала закрыть вентили подачи флюса и режущего кислорода, а затем — вентили горючего газа и кислорода. Продолжительность подогрева металла при кислородно-флюсовой резке меньше, чем при обычной кислородной резке. Резак относительно разрезаемого металла должен перемещаться равномерно, по окончании процесса резак необходимо задержать, чтобы прорезать металл по всей его толщине.

 

"Добавить комментарий"


"Обновить"

<< Физическая сущность процесса пайки. Совместимость паяемого металла и припоя   Флюсы >>

 

Menu