(495) 984-74-92
(495) 226-51-87
[email protected]
WhatsApp
Главная
Техническая информация
Технология хранения и переработки продукции
Изменение состава и свойств плодов

Изменение состава и свойств плодов и овощей при замораживании

холодильная камера Интенсивность и характер изменений продуктов при замораживании зависят от условий и параметров процесса, а также от качественных характеристик плодов и овощей. Специфика состава и строения плодов и овощей, особенности и взаимосвязь протекающих в них физико-химических и биохимических реакций оказывают существенное влияние на сохранение их свойств при замораживании.

При замораживании вода превращается в лед, что изменяет осмотические условия и резко сокращает скорость большинства биохимических процессов в плодах и овощах. Замораживание приводит к повышению концентрации растворенных веществ вследствие миграции влаги из микробной клетки во внешнюю среду на первой стадии замораживания и к внутриклеточной кристаллизации воды на последующих стадиях, а также нарушению согласованности биохимических реакций за счет различий в степени изменения их скоростей.

Устойчивость микробной клетки к замораживанию зависит от вида и рода микроорганизмов, стадии их развития, скорости и температуры замораживания, состава среды обитания. Наиболее высокая степень отмирания микроорганизмов наблюдается при температуре −4 −6С, а их рост и размножение полностью исключается при температуре −10 −12°С. В этих условиях плоды и овощи не подвергаются микробиологической порче, хотя полного уничтожения микроорганизмов не происходит. В замороженных ягодах или фруктово-ягодных соках при температуре хранения выше −8°С под действием дрожжей, происходит спиртовое брожение и накапливается спирт.

При определении условий и режимов замораживания стремятся максимально учитывать особенности свойств и строения плодов и овощей с целью достижения максимальной обратимости процесса.

Особенности состояния плодов и овощей при замораживании обусловливаются фазовым переходом воды в твердое состояние и повышением концентрации растворенных в жидкой фазе веществ. Процесс кристаллообразования приводит к изменению физических характеристик плодов и овощей, сопровождающемуся изменениями их физико-химических, биохимических и морфологических свойств.

Размер, форма и распределение кристаллов льда в структуре плодов и овощей зависят от их свойств и условий замораживания. Состояние мембран и клеточных оболочек, их проницаемость, ионная, молярная концентрация растворенных веществ отдельных структурных образований растительных тканей, степень гидратации основных компонентов предопределяют особенности распределения льда в системе, размер и форму кристаллов.

Более низкая концентрация растворенных веществ в межклеточном пространстве определяет разницу в значениях криоскопических температур структурных элементов, вследствие чего кристаллы льда формируются в первую очередь в межклеточной жидкости. При температуре ниже точки замерзания водяной пар в крупных межклеточных пространствах начинает конденсироваться в виде капелек влаги па прилегающих клеточных стенках. Эта вода и превращается в первые микроскопические кристаллики льда, которые распространяются между клетками, обволакивая стенки клеток. Кристаллы разной формы (в виде линз, разветвленные и др.) разрастаются между клетками эпидермиса и паренхимы. Процесс сопровождается повышением осмотического давления вследствие роста концентрации растворенных в жидкости солей, что в свою очередь обусловливает миграцию влаги из клеток. Дальнейший рост кристаллов происходит за счет благи, содержащейся в клетках, что объясняется разницей в давлении пара на поверхности разных кристаллов.

При понижении температуры в клетках сначала наступает состояние переохлаждения, а затем в них спонтанно возникают центры кристаллизации, приводящие к образованию внутриклеточного льда. Граница перехода из одного агрегатного состояния в другое обусловлена не только концентрацией раствора, свойствами отдельных его компонентов, но и рядом других факторов. Так, в тонких капиллярах воду можно переохладить до −20°С. Граница переохлаждения отдельных растворов и пищевых продуктов различна, а температура ниже этой границы или механическое встряхивание приводит к очень быстрому, практически массовому превращению воды в лед.

При медленном замораживании с образованием крупных кристаллов вне клеток изменяется первоначальное соотношение объемов за счет перераспределения влаги и фазового перехода воды. Быстрое замораживание предотвращает значительное диффузионное перераспределение влаги и растворенных веществ и способствует образованию мелких, равномерно распределенных кристаллов льда.

С изменением скорости замораживания по мере перемещения границ фазового перехода от периферии к центру продукта изменяются размер и характер распределения кристаллов льда. Наиболее мелкие кристаллы образуются в поверхностных слоях продукта.

Максимальное кристаллообразование в плодах и овощах происходит при температуре от −2 до −8°С. При быстром прохождении этого интервала можно избежать значительного диффузионного перераспределения воды и образования крупных кристаллов. Степень повреждения тканевых структур плодов и овощей при замораживании зависит от размеров кристаллов льда и физико-механических превращений, протекающих в тканях на молекулярном уроне.

На размер кристаллов льда и характер их распределения между структурными элементами существенно влияют состав и свойства плодов и овощей. Так, лук, картофель и некоторые другие овощи покрыты плотной естественной оболочкой, что способствует переохлаждению, тогда как капуста белокочанная, не имеющая такой оболочки, не переохлаждается, что объясняется наличием крупных межклетников и большим содержанием свободной воды.

Большое влияние на характер кристаллообразования оказывает также степень зрелости плодов. В недозрелых плодах содержится значительное количество свободной воды и происходит в основном внутриклеточная кристаллизация, что губительно действует на клетки.

В созревших плодах накапливается пектин, который обладает высокими гидрофильными свойствами. Он связывает значительное количество воды и способствует образованию гелеобразной структуры, что положительно сказывается на обратимости процесса замораживания.

Замороженные плоды и овощи приобретают новые свойства: твердость (следствие превращения воды в лед), плотность, интенсивность и яркость окраски (результат оптических эффектов) и др.; кроме того, значительно изменяются теплофизические свойства.

Вследствие снижения кинетической энергии молекул при понижении температуры, повышения вязкости внутриклеточной жидкости, уменьшения растворимости газов и диффузии веществ значительно снижается скорость химических реакций, однако полное прекращение их возможно только при абсолютном нуле (-273°С).

При постепенном вымораживании влаги в жидкой фазе продукта повышается концентрация минеральных солей (электролитов), агрессивных по отношению к белкам и оказывающих наиболее повреждающее действие на ферментные системы. При этом происходит как ускорение, так и замедление отдельных реакций, меняется их направленность. В первую очередь при замораживании повреждаются ферментные системы дыхательной цепи и окислительного фосфорилирования митохондрий, вследствие чего организм теряет основные жизненные функции, т.е. дыхание и способность к генерации энергии.

Поскольку при замораживании растительных продуктов окислительно-восстановительные процессы, присущие свежим продуктам, сдвигаются в сторону окислительных реакций, то качество полученного продукта зависит в основном от степени активности оксидоредуктаз, среди которых особое значение имеют полифенолоксидаза, аскор-батоксидаза, каталаза и пероксидаза.

Деятельность ферментов является, пожалуй, основной причиной появления посторонних привкусов в продуктах. При этом, как правило, снижается содержание крахмала и витамина С, увеличиваются кислотность и количество редуцирующих сахаров, в результате ферментативного потемнения изменяется окраска продукта, ухудшается консистенция, вкус, запах.

Из-за разрушения части ферментов при замораживании нарушаются сбалансированность и координация отдельных реакций, их синхронность. При этом устойчивая к изменению рН инвертаза в процессе замораживания проявляет активность в широком диапазоне (3,0-7,5), что инициирует реакции накопления сахаров в замороженных плодах и овощах.

Сохранение активности пектолитических ферментов способствует повышению гидрофильных свойств коллоидов и уменьшению степени повреждения клеток. В зависимости от вида продукта они оказывают различное действие: в ткани сливы эти ферменты теряют активность и замороженный продукт имеет плотную консистенцию, в яблоках же их активность приводит к размягчению ткани.

Каталаза и пероксидаза катализируют дегидрирование аминокислот, фенолов, аминов, флавонов и др., при этом ухудшается качество плодов и овощей, которые приобретают посторонние привкусы. Каталаза и пероксидаза часто действуют антагонистически по отношению друг к другу. Так, в неразрушенных тканях каталаза тормозит действие пероксидазы; в разрушенных действие последней более активно. В отдельных случаях эти ферменты оказывают одинаковое действие.

Некоторые ферменты (липаза) сохраняют активность даже при очень низких температурах. Изменения углеводов при замораживании в значительной степени зависят от их состава. Так, имеются сведения, что высокомолекулярные углеводы в процессе замораживания подвергаются агрегатированию. Для систем, богатых крахмалом, характерно снижение способности связывать воду.

Изменения витаминов при замораживании зависят от их химической структуры, вида и строения ткани. Потери витаминов имеют место при предварительной обработке сырья и непосредственно в процессе замораживания. Наиболее устойчивы к замораживанию тиамин, рибофлавин, пантотеновая кислота, каротин. Непосредственно при замораживании теряется около 10% витамина С, а с учетом подготовки сырья (бланширование, мойка и др.) потери могут составить до 20-30%. Сохранению витамина С при замораживании способствует интенсификация процесса.

При замораживании плодов и овощей в неупакованном виде неизбежны поверхностное испарение и сублимация части воды, содержащейся в продукте, что приводит к его усушке. Так, при замораживании разных видов неупакованных плодов и овощей в туннельном морозильном аппарате с принудительной циркуляцией воздуха при −35°С потери массы колеблются от 0,2 до 0,9%.

 

"Добавить комментарий"


"Обновить"

<< Быстрозамороженные продукты   Замораживание продуктов растительного происхождения >>

 

Menu