8 (495) 984-74-92
8 (495) 226-51-87
Главная
Техническая информация
Водоохлаждающие установки - чиллеры
Чиллеры

Чиллеры

Чиллеры (chiller) – это водоохлаждающая парокомпрессионная холодильная машина. Холодильная машина предназначена для отбора теплоты у охлаждаемой среды при низких температурах, при этом отдача теплоты при высоких температурах является побочным процессом. В составе холодильной машины несколько функциональных элементов: компрессор (от 1 до 4), конденсатор, электродвигатель, испаритель, устройство для расширения хладагента или терморегулирующий вентиль, блок управления.

Получение искусственного холода базируется на простых физических процессах: испарении, конденсации, сжатии и расширении рабочих веществ. Рабочие вещества, используемые в холодильных агрегатах, называют холодильными агентами. Холодильные машины различаются:

Что такое чиллеры

  • по конструкции (абсорбционные, со встроенным или выносным конденсатором – конденсаторные и бесконденсаторные);
  • типу охлаждения конденсатора (воздушное или водяное);
  • схемам подключения;
  • наличию теплового насоса.
Преимущества
  • Удобство эксплуатации – круглогодично автоматически поддерживаются заданные параметры в каждом помещении в соответствии с санитарно-гигиеническими нормами;
  • Гибкость системы — расстояние между чиллером и фанкойлами ограничено только мощностью насоса и может достигать сотен метров;
  • Экономическое преимущество – сокращаются затраты на эксплуатацию;
  • Экологическое преимущество – безвредный холодоноситель;
  • Строительное преимущество – гибкость планировки, минимальные затраты полезной площади на размещение холодильной машины, т.к ее можно установить на крыше, техническом этаже зданий, во дворе;
  • Акустическое преимущество – малошумное исполнение агрегатов;
  • Безопасность – риск залива ограничен за счет применения запорной арматуры.
Чиллеры ВМТ-Ксирон могут служить нее только источником холодоснабжения, но и в режиме реверсирования холодильного или водяного цикла работать как тепловой насос, что востребовано в холодное время года.

Виды чиллеров

Абсорбционные чиллеры

Абсорбционные чиллеры — очень перспективная область развития холодильной техники, получающая всё более широкое применение ввиду ярко выраженной современной тенденции к электросбережению. Дело в том, что для абсорбционных холодильных машин основным источником энергии является не электрический ток, а бросовое тепло, неизбежно возникающее на заводах, предприятиях и т. п. и безвозвратно выбрасываемое в атмосферу, будь то горячий воздух, охлаждаемая воздухом горячая вода и др.

Рабочим веществом является раствор из двух, иногда трех компонентов. Наиболее распространены бинарные растворы из поглотителя (абсорбента) и хладагента, отвечающие двум главным требованиям к ним: высокая растворимость хладагента в абсорбенте и значительно более высокая температура кипения абсорбента по сравнению с хладагентом. Широкое применение получили растворы вода-аммиак (водоаммиачные холодильные машины) и бромистый литий-вода (бромистолитиевые машины), в которых, соответственно, вода и бромистый литий являются абсорбентами, а аммиак и вода — хладагентами. Рабочий цикл в абсорбционных чиллерах (см. на рисунке ниже) выглядит следующим образом: в генераторе, к которому подводится бросовое тепло) кипит рабочее вещество, в результате чего выкипает практически чистый хладагент, ведь его температура кипения гораздо ниже, чем у абсорбента.

Абсорбционные чиллеры

Пар хладагента поступает в конденсатор, где охлаждается и конденсируется, отдавая своё тепло окружающей среде. Далее полученная жидкость дросселируется, в результате чего охлаждается при расширении) и направляется в испаритель, где, испаряясь, отдает своё холод потребителю и следует в абсорбер. Сюда же через дроссель подается абсорбент, из которого в самом начале выкипел хладагент, и поглощает пары хладагента, ведь мы выше обозначили требование их хорошей растворимости. Наконец, насыщенный хладагентом абсорбент насосом перекачивается в генератор, где хладагент снова выкипает. Основные преимущества абсорбционных чиллеров:

  1. Идеальное решение для создания тригенерации на предприятии. Тригенерационный комплекс – это комплекс позволяющий на сегодняшний день, максимально снизить себестоимость электроэнергии, горячего водоснабжения, отопления и охлаждения для предприятия за счет использования собственной когенерационной электростанции в связке с абсорбционным чиллером;
  2. Продолжительный срок службы – в пределах 20 лет, до проведения первого капитального ремонта;
  3. низкая себестоимость вырабатываемого холода, холод вырабатывается почти бесплатно, т. к. асборбционные чиллеры просто утилизируют лишнее тепло;
  4. Пониженный уровень шума и вибрации, в результате отсутствия компрессоров с электромоторами, как следствие — тихая работа и высокая надежность;
  5. Применение холодильных/нагревающих агрегатов с пламенным газовым генератором прямого действия позволяют отказаться от бойлеров, которые необходимо использовать в обычных установках. Это уменьшает начальную стоимость системы и делает абсорбционные чиллеры конкурентоспособными по сравнению с обычными системами, в которых используются бойлеры и охладители;
  6. Обеспечение максимальной экономии электроэнергии в периоды пиковых нагрузок. Другими словами не потребляя электроэнергии для производства холода/тепла, абсорбционные чиллеры не перегружают электросети предприятия даже в моменты пиковых нагрузок;
  7. Имеется возможность объединения в паровые районные системы с эффективной холодильной установкой двойного эффекта;
  8. Имеется возможность распределения нагрузки в условиях максимальной производительности в режиме охлаждения. Устройство справляется с критической нагрузкой в режиме охлаждения с минимальным расходом электроэнергии за счет применения охладителей с пламенным газовым генератором прямого действия или генератора с паровым нагревом;
  9. Позволяет использовать аварийные электрогенераторы меньшей мощности, так как потребление энергии у абсорбционных холодильных установок является минимальным, если сравнивать их с электрическими холодильными установками;
  10. Безопасность для озонового слоя, не содержит хладагентов, разрушающих озон. Охлаждение осуществляется без использования хладагентов, содержащих хлор;
  11. Снижается до минимума общее воздействие на окружающую среду, так как уменьшено потребление электроэнергии и газа, вызывающих парниковый эффект и как следствие глобальное потепление.

Абсорбционные чиллеры

Абсорбционный чиллер — это машина, которая производит охлажденную воду, используя остаточное тепло из таких источников, как пар, горячая вода или горячий газ. Охлажденная вода производится по принципу охлаждения: жидкость (хладагент), которая испаряется при низкой температуре, поглощает тепло из окружающей ее среды при испарении. Чистая вода обычно используется в качестве хладагента, тогда как раствор лития бромида (LiBr) используется в качестве абсорбента.

Абсорбционная система

Как работают абсорбционные холодильные системы

В абсорбционных холодильных установках абсорбент, генератор, насос и теплообменник заменяют компрессор систем охлаждения парового компрессора (механического охлаждения). Остальные три (3) компонента, обнаруженные также в механических холодильных системах, то есть расширительный клапан, испаритель и конденсатор, также используются в абсорбционных холодильных системах.

абсорбционные холодильные установки

Стадия испарения абсорбционных охладителей

Обратитесь к рисунку-2 для схематического объяснения процесса абсорбционного охлаждения. Подобно механическому охлаждению, цикл «начинается», когда жидкий хладагент высокого давления из конденсатора проходит через расширительный клапан (1, на фиг.2) в испаритель низкого давления (2, на фиг.2) и собирает в испарителе Отстойник.

При этом низком давлении небольшое количество хладагента начинает испаряться. Этот процесс испарения охлаждает оставшийся жидкий хладагент. Аналогичным образом, передача тепла от сравнительно теплой технологической воды к охлажденному в настоящее время хладагенту приводит к тому, что последний испаряется (2, на фиг.2), и результирующий пар хладагента подается в абсорбер нижнего давления (3, На фиг.2). По мере того как технологическая вода теряет тепло к хладагенту, его можно охладить до значительно низких температур. На этой стадии охлажденную воду фактически получают путем испарения хладагента.

Стадия абсорбции абсорбционных охладителей

Абсорбция паров хладагента в бромиде лития является экзотермическим процессом. В поглотителе хладагент «всасывается» поглощающим раствором литиевого бромида (LiBr). Этот процесс не только создает область низкого давления, которая тянет непрерывный поток пара хладагента из испарителя в абсорбер, но также заставляет пар конденсироваться (3, на фиг.2), поскольку он высвобождает теплоту испарения, предусмотренную в испаритель. Это тепло вместе с теплотой разбавления, возникающей при смешивании конденсата хладагента с абсорбентом, переносится в охлаждающую воду и выделяется в градирне. Охлаждающая вода — это утилита на этой стадии охлаждения.

Регенерация раствора бромида лития

По мере того как абсорбент литиевого бромида всасывает хладагент, он становится все более и более разбавленным, уменьшая его способность поглощать большее количество хладагента. Для продолжения цикла абсорбент должен быть повторно сконцентрирован. Это достигается постоянным откачиванием разбавленного раствора из абсорбера до низкотемпературного генератора (5 на рисунке 2), где добавление остаточного тепла (горячая вода, пар или природный газ) закипает (4, на рисунке 2) Хладагент из абсорбента. Часто этот генератор используется для утилизации отработанного тепла с завода. Как только хладагент удаляется, реконцентрированный раствор бромида лития возвращается в абсорбер, готовый возобновить процесс абсорбции, и свободный хладагент отправляется в конденсатор (6, на фиг.2). На этом этапе регенерации отработанное тепло от пара или горячей воды является полезным.

Конденсация хладагента

Пар хладагента, свариваемый в генераторе (5, на рисунке 2), возвращается в конденсатор (6), где он возвращается в свое жидкое состояние, когда охлаждающая вода поднимает теплоту испарения. Затем хладагент возвращается в расширительный клапан, где завершается полный цикл. На стадии конденсации охлаждающая вода снова становится полезной.

Различные технологии для абсорбционных чиллеров

Абсорбционные чиллеры могут быть одноразовыми, двойными или новейшими, что является тройным эффектом. Машины с одним эффектом имеют один генератор (см. Схему выше, рисунок 2) и имеют значение COP меньше 1.0. Машины с двойным эффектом имеют два генератора и два конденсатора и более эффективны (типичные значения COP> 1,0). Машины с тройным эффектом добавляют третий генератор и конденсатор и являются наиболее эффективными: типичное значение COP> 1,5.

Плюсы и минусы систем абсорбционной холодильной машины

Основное преимущество абсорбционных чиллеров — более низкие затраты на электроэнергию. Затраты могут быть еще более уменьшены, если природный газ доступен по низкой цене или если мы можем использовать источник низкосортного тепла, который в противном случае теряется на заводе.

Два основных недостатка абсорбционных систем — их размер-вес, а также их потребность в более крупных градирнях. Поглотительные больше и тяжелее по сравнению с электрическими чиллерами той же мощности.

Парокомпрессионные чиллеры

Парокомпрессионные чиллеры — это наиболее распространенный в настоящее время тип холодильного оборудования. Генерация холода осуществляется в парокомпрессионном цикле, состоящем из четырех основных процессов — компрессии, конденсации, дросселирования и испарения — с использованием четырех основных элементов — компрессора, конденсатора, регулирующего вентиля и испарителя — в следующей последовательности: Рабочее вещество (хладагент) в газообразном состоянии поступает на вход компрессора с давлением P1 (~7атм) и температурой T1 (~5° C) и сжимается там до давления P2 (~30атм), нагреваясь до температуры T2(~80° C).

Парокомпрессионные чиллеры

Далее хладагент следует в конденсатор, где охлаждается (как правило, за счет окружающей среды) до температуры T3 (~45С), при этом давление в идеале остается неизменным, реально же падает на десятые доли атм. В процессе охлаждения хладагент конденсируется и полученная жидкость поступает в дроссель (элемент с большим гидродинамическим сопротивлением), где очень быстро расширяется. На выходе получается паро-жидкостная смесь с параметрами P4(~7атм) и T4(~0С), поступающая в испаритель. Здесь хладагент отдает свой холод обтекающему испаритель теплоносителю, нагреваясь и испаряясь при постоянном давлении (реально, оно падет на десятые доли атмосферы). Полученный охлажденный теплоноситель (Tх~7С) и является конечным продуктом. А хладагент на выходе из испарителя имеет параметры P1 и T1, с которыми попадает в компрессор. Цикл замыкается. Движущая сила — компрессор.

Хладагент и теплоноситель

Особо отметим разделение схожих на первый взгляд терминов — хладагент и теплоноситель. Хладагент — это рабочее вещество холодильного цикла, в процессе которого оно может находиться в широком диапазоне давлений, а также претерпевает фазовые изменения. Теплоноситель же агрегатного состояния (фазовых изменений) не меняет и служит для передачи (переноса) тепла (холода) на определенное расстояние. Конечно, можно провести аналогию, сказав, что движущей силой хладагента является компрессор со степенью сжатия около 3, а теплоносителя — насос, повышающий давление в 1.5–2.5 раза, т. е. цифры соизмеримые, но принципиальным является факт наличия фазовых изменений у хладагента. Другими словами, теплоноситель всегда работает при температурах ниже точки кипения для текущего давления, хладагент же может иметь температуру как ниже, так и выше точки кипения.

Классификация парокомпрессионных чиллеров

По типу установки:

Наружной установки (встроенный конденсатор)

Подобные агрегаты представляют собой единый моноблок, устанавливаемый на улице. Удобен тем, что позволяет эксплуатировать неэксплуатируемые площади — кровлю, открытые площади на земле и др. Также это и более дешевое решение. В то же время, использование воды в качестве теплоносителя сопряжено с необходимостью её слива на зимний период, что неудобно в эксплуатации, поэтому применяются незамерзающие жидкости, как новые солевые, так и традиционные — растворы гликолей в воде. При этом необходимо производить пересчет работы чиллера под каждый конкретный теплоноситель. Отметим, что все сегодняшние незамерзающие растворы на 15-20% менее эффективны, чем вода. Последнюю вообще трудно превзойти — высокая по меркам жидкостей теплоёмкость и плотность делают её практически идеальным теплоносителем, если бы не столь высокая температура замерзания.

Наружной установки

Внутренней установки (выносной конденсатор)

Здесь ситуация практически обратная по сравнению с предыдущим вариантом. Чиллер состоит из двух частей — компрессорно-испарительного блока и конденсатора, соединенные фреоновой трассой. Требуются иногда достаточно ценные площади внутри здания, при этом по-прежнему необходимо место снаружи для размещения конденсатора, правда с заметно меньшими требованиями как по площади так и по массе. В чиллерах внутренней установки не возникает проблем с использованием воды. Упомянем и несколько большее энергопотребление компрессора и увеличенные потери давления и температуры хладагента в связи с удлиненной трассой (от чиллера до конденсатора), которая, кстати, также ограничена компрессором по длине.

Наружной установки

По типу исполнения конденсатора:

Воздушного охлаждения

Это самый распространенный вариант. Конденсатор представляет собой трубчато-ребристый теплообменник и охлаждается бесплатным наружным воздухом. Это и дешево и просто в проектировании, монтаже и эксплуатации. Пожалуй, минусом можно назвать лишь большие габариты конденсатора в виду малой плотности воздуха.

Воздушного охлаждения

Водяного охлаждения

Тем не менее, в ряде случаев используется водяное охлаждение конденсатора. В этом случае конденсатор является пластинчатым, пластинчато-ребристым или теплообменником ‛труба в трубе“. Водяное охлаждение заметно уменьшает габариты конденсатора, а также позволяет реализовать рекуперацию тепла. Но полученная нагретая вода (около 40С) не является ценным продуктом, часто её просто отправляют на охлаждение в градирни, опять таки отдавая всё тепло окружающей среде. Таким образом, водяное охлаждение реально выгодно в случае наличия потребителя нагретой воды. В любом случае, чиллеры с водяным охлаждением дороже, чем с воздушным, а вся система в целом более сложна и в проектировании и в монтаже и в эксплуатации.

Традиционно для охлаждения конденсатора холодильных машин применяются градирни, в которых вода, нагретая в конденсаторе, разбрызгивается через форсунки в потоке движущегося наружного воздуха, и при непосредственном контакте с воздухом охлаждается до температуры мокрого термометра наружного воздуха, поступая затем в конденсатор. Это довольно громоздкое устройство, требующее специального обслуживания, установки насоса и другого вспомогательного оборудования. В последнее время применяются так называемые «сухие» градирни или охладители конденсатора, которые представляют поверхностный теплообменник «вода-воздух» с осевыми вентиляторами, в котором теплота воды, нагретой в конденсаторе передается воздуху, циркуляцию которого через теплообменник обеспечивают осевые вентиляторы.

В первом случае водяной контур разомкнутый, во втором случае — замкнутый, в котором необходимо установить все необходимое оборудование: циркуляционный насос, расширительный бак, предохранительный клапан, запорную арматуру. Для предотвращения замерзания воды при работе чиллера в режиме охлаждения при отрицательных температурах наружного воздуха, замкнутый контур заполняется водным раствором незамерзающей жидкости. При водяном охлаждении конденсатора теплота конденсации также бесполезно теряется и способствует тепловому загрязнению окружающей среды. При наличии источника теплоты, например системы горячего водоснабжения или технологической линии, в период выработки холода возможно полезно использовать теплоту конденсации.

Наружной установки

По типу исполнения гидромодуля:

Со встроенным гидромодулем

Чиллеры такой конфигурации представляют собой моноблок, в который включена насосная группа и, как правило, расширительный бак. Очевидно, что производители выпускают стандартные гидромодули чаще всего двух модификаций — с менее и более мощными насосами, которые не всегда удовлетворяют необходимым требованием (обычно их напора просто может не хватать). Кроме того, встроенный гидромодуль в чиллерах наружной установки будет расположен на улице, что может создавать проблемы зимой — незамерзающий теплоноситель может загустевать и в первые секунды работы насосы не способны преодолеть его вязкость и не запускаются. С другой стороны, нет необходимости искать место для насосной станции, продумывать её компоновку и т. д. плюс отсутствуют проблемы с автоматикой — это очень весомые преимущества встроенных гидромодулей.

Со встроенным гидромодулем

С выносным гидромодулем

Выносной гидромодуль используется, во-первых, когда не хватает мощности встроенного; во-вторых, при необходимости резервирования (отметим, что во встроенных гидромодулях допускается один резервный насос); в-третьих, если по каким-либо причинам желательна внутренняя установка насосов. Система становится гибкой, а длина трассы практически неограниченной, ведь насосы бывают и очень мощные. В то же время существуют и готовые насосные станции, включающие в себя и насосы и расширительный бак и автоматику и компактно собранные на опорной раме.

Выносной гидромодуль

По типу компрессора:

  • Поршневые компрессора

    поршневой компрессор

  • Ротационные компрессора

    ротационный компрессор

  • Спиральные компрессора

    спиральный компрессор

  • Винтовые компрессора

    винтовой компрессор

По типу вентиляторов конденсатора:

  • Осевые вентиляторы

    осевой вентилятор

  • Центробежные вентиляторы

    центробежный вентилятор

Опции чиллеров

Фрикулинг — функция свободного охлаждения. Практически незаменима для чиллеров, работающих и в холодное время года. Возникает разумный вопрос, зачем использовать для охлаждения парокомпрессионный цикл, если за бортом и без того холодно. Ответ приходит сам собой — следует теплоноситель напрямую охлаждать уличным воздухом. В системе холодоснабжения наиболее распространен температурный график 7/12С, а, значит, теоретически, при уличных температурах ниже 7С уже возможно использовать свободное охлаждение. На практике, из-за недорекупераци, область применения несколько сужается — при температуре 0С и ниже холодопроизводительность от фрикулинга достигает номинальных значений.

Фрикулинг

Теловой насос — это режим работы чиллера ‛на отопление“. Парокомпрессионный цикл работает несколько в иной последовательности, испаритель и конденсатор меняются своими ролями и теплоноситель не охлаждается, а нагревается. Кстати, заметим, что чиллер хоть и холодильная машина, дающая трижды больше холода, чем потребляет, но он ещё более эффективен в качестве отопителя — тепла он даст в четыре раза больше, чем затратит электроэнергии. Режим теплового насоса наиболее распространен в общественных и административных зданиях, иногда применяется для складов и др.

Плавный пуск компрессора — опция, позволяющая избавиться от высоких пусковых токов, превышающих рабочие в 2–3 раза.

Типология чиллеров

Источником холода в водовоздушных системах кондиционирования воздуха является чиллер — водоохлаждающая холодильная машина. Существуют чиллеры различных типов в зависимости от способа охлаждения конденсатора, способа комплектации: моноблочного или с выносным конденсатором, со встроенным гидромодулем или без него, типа компрессора, режима работы (только охлаждение или охлаждение и отопление). Производители чиллеров постоянно модернизируют выпускаемое оборудование на основе новейших технологических и конструкторских разработок.

Номенклатурный ряд выпускаемых чиллеров в последние годы значительно обновился за счет широкого применения новых более эффективных типов компрессоров: спиральных, одновинтовых, двухвинтовых которые в диапазоне малых, средних и больших производительностей постепенно вытесняют поршневые компрессоры. Расширился ряд чиллеров со встроенным гидравлическим модулем, в том числе и с аккумулирующим баком.

Чаще используются в качестве испарителей пластинчатые и поверхностные теплообменники, что дало возможность уменьшить габариты агрегатов и их вес. В последнее время производители начали випускать чиллеры на экологически безопасных фреонах R407° C, R134a. В зависимости от способа охлаждения конденсатора чиллеры разделяются на чиллеры с воздушным охлаждением конденсатора и чиллеры с водяным охлаждением конденсатора. Наибольшее применение находят чиллеры с воздушным охлаждением конденсатора, когда теплота от конденсатора отводится воздухом, чаще наружным.

Этот способ отвода теплоты требует установки чиллера снаружи здания или применения специальных мероприятий, обеспечивающих такой способ охлаждения. Чиллеры с воздушным охлаждением конденсатора выпускаются в моноблочном исполнении, когда все элементы чиллера находятся в одном блоке, и чиллеры с выносным конденсатором, когда основной блок может устанавливаться в помещении, а конденсатор, охлаждаемый наружным воздухом, размещается вне здания, например на крыше или во дворе. Основной блок соединяется с воздушным конденсатором, установленным снаружи здания, медными фреонопроводами.

Моноблочные чиллеры

Чиллеры с осевыми вентиляторами

Чиллеры в моноблочном исполнении выпускаются с осевыми вентиляторами и с центробежными вентиляторами. Осевые вентиляторы не могут работать на вентиляционную сеть, поэтому чиллеры с осевыми вентиляторами должны устанавливаться только снаружи здания, при этом ничто не должно мешать поступлению воздуха в конденсатор и выбросу его вентиляторами. Чиллеры с осевыми вентиляторами могут изготавливаться в различных вариантах исполнения: 1 — стандартный, 2 — с полной регенерацией теплоты, 3 — с частичной регенерацией теплоты, 4 — для охлаждения водного незамерзающего раствора этиленгликоля в диапазоне рабочих температур от +4°С до −7°С.

моноблочные чиллеры

Возможно исполнение чиллера с дополнительным способом регулирования хо-лодопроизводительности. При вариантах исполнения чиллеров 1, 3 теплота конденсации передается наружному воздуху и безвозвратно теряется. При вариантах исполнения чиллеров 2 и 4 устанавливаются дополнительные кожухотрубные теплообменники, дублирующие конденсатор полностью в варианте R (использование 100% теплоты конденсации для нагревания воды) или частично (использование 15% теплоты конденсации для нагревания воды).

При варианте 4 дополнительный кожухотрубный конденсатор устанавливается на нагнетательной линии после компрессора перед основным воздушным конденсатором. Конфигурация чиллера может быть: ST-стандартная; LN — с пониженным уровнем шума, что достигается устройством звукопоглощающего кожуха для компрессора и понижением скорости вращения осевого вентилятора конденсатора по сравнению со стандартной конфигурацией; EN — со значительным снижением уровня шума, что достигается устройством звукопоглощающего кожуха для компрессора, увеличением площади живого сечения конденсатора для прохода воздуха и понижением скорости вращения осевого вентилятора, а так же установкой компрессора на пружинные антивибрационные опоры, применением гибких вставок на нагнетательных и всасывающих трубопроводах холодильного контура.

Требования по уровню звуковой мощности, создаваемой работающим чиллером с осевыми вентиляторами при установке за пределами здания могут быть не очень высокими, если отсутствуют особые требования по уровню шума в застройке, где это здание расположено. Если такие ограничения имеют место, необходимо выполнить расчет уровня звукового давления в помещении шума, излучаемого чиллером, и при необходимости применить чиллеры специальной конфигурации.

Чиллеры с центробежными вентиляторами

Чиллеры с центробежными вентиляторами предназначены для установки внутри здания. Основные требования к этим блокам: компактность и низкий уровень шума, связанные с установкой внутри помещения. В чиллерах данного типа используются центробежные вентиляторы с низкой скоростью вращения, большая часть типоразмеров малой и средней производительности имеет спиральный компрессор, отличающийся низким уровнем шума, в типоразмерах с герметичным поршневым компрессором он помещен в специальный звукоизолирующий кожух. Боковые панели корпуса таких чиллеров имеют звукопоглощающее покрытие изнутри, предусмотрена возможность наряду со стандартной конфигурацией ST, конфигурации SC с низким уровнем шума, где полугерметичный поршневой компрессор помещен в шумопоглощающий кожух и имеются гибкие вставки на нагнетательном и всасывающем трубопроводах холодильного контура.

чиллер с центробежный вентилятором

При выборе данного типа чиллера и его размещении следует обеспечить свободный подвод охлаждающего воздуха к чиллеру и отвод воздуха, нагретого в конденсаторе. Это осуществляется с помощью всасывающих и нагнетательных воздуховодов, при этом образуется вентиляционная сеть, состоящая из центробежного вентилятора, воздухонагревателя (конденсатор чиллера), воздуховодов, заборной и выпускной вентиляционных жалюзийных решеток. Размеры последних подбираются на основе рекомендуемых скоростей движения воздуха в сечении решеток и воздуховодов.

Необходимо на основе аэродинамического расчета определить потери давления в вентиляционной сети. Потери давления в вентиляционной сети должны соответствовать давлению, развиваемому центробежным вентилятором, при значении расхода воздуха, охлаждающего конденсатор. Если давление центробежного вентилятора меньше, чем потери давления в вентиляционной сети, воз- можно применить более мощный электродвигатель к центробежному вентилятору по специальному заказу. Воздуховоды должны присоединяться к чиллеру при помощи гибких вставок, чтобы вибрация не передавалась на вентиляционную сеть.

Производительность чиллеров

В зависимости от производительности чиллеры комплектуются тремя типами компрессоров: спиральными компрессорами для малой (в последнее время произошло смещение в сторону средней) производительности, одновинтовыми компрессорами для средней и большой производительности двухвинтовыми компрессорами для средней производительности, герметичными поршневыми компрессорами для малой производительности и полугерметичными поршневыми компрессорами для средней производительности. Спиральные и винтовые компрессоры как более эффективные в определенном диапазоне производительности по сравнению с поршневыми заменяют постепенно последние. Чиллеры выпускаются в двух исполнениях: работающими только в режиме холодильной машины и работающими в двух режимах: холодильной машины и теплового. В чиллерах с воздушным охлаждением конденсатора, в которых предусмотрена работа в режиме теплового насоса, предусмотрено реверсирование холодильного цикла, в чиллерах с водяным охлаждением предусмотрено реверсирование по водяному контуру.

Схема чиллера со встроеным гидравлическим модулем

В варианте исполнения в блок чиллера включены: циркуляционный насос на обратном трубопроводе, мембранный расширительный бак, предохранительный клапан для воды, спускной вентиль, узел заполнения водой, манометр, дифференциальное реле давления.

Фрикулинг

Энергосберегающие технологии в чиллерах

При разработке современного климатического оборудования особое значение уделяется проблеме энергосбережения. В Европе количество энергии, потребляемой оборудованием в течение годового цикла эксплуатации, является одним из основных критериев для принятия решения при рассмотрении предложений, представленных на тендер. На сегодняшний день существенным потенциалом для повышения энергоэффективности является разработка и создание климатической техники, способной как можно точнее покрывать график нагрузки при постоянно меняющихся условиях работы. Например, согласно исследованиям, проведенным фирмой Clivet, колебания средней величины нагрузки на систему кондиционирования в течение сезона составляют до 80%, в то время как работа на полную мощность необходима всего лишь несколько дней в году.

В то же время, суточный график тепловых избытков имеет также неравномерный характер c явно выраженным максимумом. Традиционно в чиллерах мощностью 20–80 кВт устанавливают два одинаковых компрессора и делают два независимых холодильных контура. В результате агрегат способен работать в двух режимах на 50% и 100% своей номинальной мощности. Новое поколение чиллеров с холодильной мощностью от 20 до 80 кВт позволяет выполнять трехступенчатое регулирование производительности. В этом случае полная холодильная мощность распределяется между компрессорами в соотношении 63% и 37%.

У чиллеров нового поколения оба компрессора включены параллельно и работают на один холодильный контур, то есть имеют общий конденсатор и испаритель. Такая схема значительно увеличивает коэффициент преобразования энергии (КПЭ) холодильного контура при работе с неполной нагрузкой. Для таких чиллеров при 100% нагрузке и температуре наружного воздуха 25°С КПЭ = 4, а при работе на 37% КПЭ = 5. Учитывая то, что 50% времени чиллер работает с нагрузкой 37% это дает существенную экономию энергии.

Микропроцессорные контроллеры

Для эффективной реализации нового решения на чиллеры устанавливаются микропроцессорные контроллеры, которые позволяют:
  • контролировать все рабочие параметры оборудования;
  • регулировать установленное значение температуры воды на выходе из чиллера в соответствии с параметрами наружного воздуха, технологическими процессами или командами от централизованной системы управления (диспетчеризации);
  • осуществлять выбор оптимального шага регулирования мощности;
  • в случае реальной необходимости быстро и эффективно выполнять цикл размораживания (для моделей с тепловым насосом).

Микропроцессорные контроллеры

В результате автоматически происходит минимизация кратковременных включений компрессора, оптимизация времени работы компрессоров и корректировка параметров воды на выходе из чиллеров в соответствии с реальными потребностями. Как показали проведенные испытания, в среднем, в течение суток происходит всего 22 включения компрессоров, в то время как компрессора обычных чиллеров включаются 72 раза.

Среднегодовой КПЭ чиллера достигает 6, а экономия электроэнергии, при применении современных чиллеров вместо обычных, составляет 7,5 кВт•час на 1м2 площади обслуживаемого объекта за сезон, или 35%. Еще одно важное преимущество, которое дает применение новых чиллеров, состоит в том, что исчезает необходимость установки громоздких аккумулирующих баков, а встроенный в корпус чиллера циркуляционный насос позволяет обойтись без дополнительной насосной станции.

Энергоэффективные компресоры

Как известно, для точности выполнения графика нагрузки чиллеров большое значение имеет тип используемых компрессоров. Традиционно в чиллерах большой мощности применялись поршневые или винтовые компрессоры. Поршневой компрессор имеет большое количество движущихся частей и, как следствие, низкую эффективность из-за больших потерь на трение. В процессе эксплуатации поршневых компрессоров возникает высокий уровень шума и вибрации, а также существует необходимость их регулярного обслуживания. Винтовые компрессоры, в свою очередь, имеют сложную конструкцию, и, как следствие, очень высокую стоимость. Производство винтовых компрессоров оказывается низкорентабельным.

Обслуживание подобных компрессоров трудоемко и требует высокой квалификации персонала. В последние годы на рынке появились новые компрессора типа SCROLL, которые лишены характерных недостатков поршневых и винтовых компрессоров. Scroll-компрессоры обладают высокой энергетической эффективностью, низким уровнем шума и вибраций и не нуждаются в обслуживании. Этот тип компрессоров прост по конструкции, очень надежен и, вместе с тем, недорог. Однако, производительность Scroll-компрессоров, как правило, не превышает 40 кВт.

Энергоэффективные компресоры

Применение в современных чиллерах множества небольших, но очень надежных компрессоров типа Scroll, а также нескольких холодильных контуров, позволило получить очень «маневренный» чиллер, который способен с высокой точностью выдавать требуемую холодильную мощность. Очевидно, что применение такого чиллера делает ненужным установку насосной станции, а широкий выбор встраиваемых в корпус чиллера насосов разной производительности решает все вопросы, связанные с циркуляцией охлажденной воды. Особо следует выделить очень маленькие пусковые токи нового оборудования. Ведь пуск небольших Scroll-компрессоров, имеющих низкое электропотребление, происходит поочередно, в соответствии с возрастанием нагрузки на агрегат.

У всех чиллеров последних поколений современная микропроцессорная система управления позволяет регулировать установленное значение температуры воды на выходе из чиллера в соответствии с параметрами наружного воздуха, технологическими процессами или командами от централизованной системы управления (диспетчеризации). С экономической точки зрения, использование большого числа Scroll-компрессоров и установка встроенного циркуляционного насоса вместо отдельной насосной станции оказывается более выгодным вариантом, чем применение дорогих, мощных и сложных полугерметичных компрессоров.

Преимущества и недостатки чиллеров

Преимущества

По сравнению со сплит-системами, в которых между холодильной машиной и локальными узлами циркулирует газовый хладагент, системы чиллер-фанкойл обладают преимуществами:
  • Масштабируемость. Количество фанкойлов (нагрузок) на центральную холодильную машину (чиллер) практически ограничено только её производительностью.
  • Минимальный объём и площадь. Система кондиционирования крупного здания может содержать единственный чиллер, занимающий минимальный объём и площадь, сохраняется внешний вид фасада за счет отсутствия внешних блоков кондиционеров.
  • Практически не ограниченное расстояние между чиллером и фанкойлами. Длина трасс может достигать сотен метров, так как при высокой теплоёмкости жидкого теплоносителя удельные потери на погонный метр трассы намного ниже, чем в системах с газовым хладагентом.
  • Стоимость разводки. Для связи чиллеров и фанкойлов используются обыкновенные водяные трубы, запорная арматура и т. п. Балансировка водяных труб, то есть выравнивание давления и скорости потока воды между отдельными фанкойлами, существенно проще и дешевле, нежели в газонаполненных системах.
  • Безопасность. Потенциально летучие газы (газовый хладагент) сосредоточены в чиллере, устанавливаемом, как правило, на воздухе (на крыше или непосредственно на земле). Аварии трубной разводки внутри здания ограничены риском залива, который может быть уменьшен автоматической запорной арматурой.

Недостатки

  • Системы чиллер-фанкойл, в строгом смысле, не являются системами вентиляции — они охлаждают воздух в каждом кондиционируемом помещении, но никак не влияют на циркуляцию воздуха. Поэтому для обеспечения воздухообмена системы чиллер-фанкойл комбинируются с воздушными (крышными) системами кондиционирования, холодильные машины которых охлаждают наружный воздух и подают его в помещения по параллельной системе принудительной вентиляции.
  • Будучи более экономичными, чем крышные системы, системы чиллер-фанкойл безусловно проигрывают в экономичности VRV и VRF-системам. Однако стоимость VRV-систем остаётся существенно выше, а их предельная производительность (объёмы охлаждаемых помещений) — ограничены (до нескольких тысяч кубометров).
  • Некоторые аспекты проектирования холодоснабжения
  • Холодильная машина — это габаритное (все три измерения заметно превышают метр, а длина может превзойти и 10м) и тяжелое (до 15 тонн) оборудование. На практике это означает практически безоговорочную необходимость в применении разгрузочных рам для распределения массы чиллера на большую площадь с выбором допустимых точек опоры. Стандартные рамы далеко не всегда подходят для каждого конкретного случая, поэтому, чаще всего, требуется специальное проектирование.
  • Чиллер ВМТ-Ксирон имеет в составе 1–4 компрессора, 1–12 вентиляторов, 1–2 насоса, что вызывает целую гамму негативных вибраций, поэтому, установка чиллера непременно производится на виброопоры соответствующей несущей способности, а подсоединение всех трубопроводов — через вибровставки соответствующего диаметра.
  • Как правило, подсоединительные диаметры трубопроводов у чиллера меньше, чем магистральной трубы (чаще на один, иногда и на два типоразмера), поэтому требуется переход. Рекомендуется непосредственно у чиллера установить вибровставку и сразу следом — переход. Из-за значительных гидравлических потерь удалять переход от агрегата не рекомендуется.
  • Во избежание засорения испарителя со стороны теплоносителя на входе в чиллер обязательным является установка фильтра.
  • В случае встроенного гидромодуля, на выходе из чиллера обязательно наличие обратного клапана во избежание движения воды против проектного.
  • Для регулирования прямого и обратного потоков рекомендуется перемычка между ними с регулятором перепада давления.
  • Наконец, в документации всегда следует обращать внимание, для какого теплоносителя приведены данные. Применение незамерзающего теплоносителя в среднем на 15-20% снижает эффективность работы системы холодоснабжения.

 

"Комментарии"  

 
0 # Александр 11.05.2014 16:48
Здравствуйте. Можно ли использовать данные установки с акцентом на обогрев. Каков диапазон рабочих температур при работе в качестве теплового насоса?
"Ответить" | "Ответить с цитатой" | "Цитировать"
 

"Добавить комментарий"


"Обновить"

<< Определение объема помещения для размещения чиллера   Выбор насоса для циркуляции хладоносителя >>